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Abstract. A microcanonical Monte Carlo algorithm has been developed to calculate
the density of states of a two-dimensional Blume-Capel model in zero field. The
full density of states is calculated for a 16 x 16 lattice as a function of the two spin
summaltions which appear in the Mamiltonian. This permits the partition function and
related thermodynamic fenctions to be evaluated for any temperature and any single
site anisotropy from a single data set. Resuits are presented for the pseudo-critical
transition temperature and the maximum in the specific heat as a function of the single
site anisotropy parameter. The technique will alfow the region near the tricritical point
to be explored in detail and wilt permit the future delermination of the zeros of the
partition function. It should be noted that the microcanonical sampling method of Lee
was found to be unusably slow for the § = | problem in regions where the density of
states had a significant slope and the microcanonical sampling described in this work is
a significant improvement on his sampling method.

1. Introduction

The motivation behind the work presented in this paper is to obtain an estimate of
the tricritical point in a two-dimensional ferromagnetic Blume-Capel model [1,2] by
computer simulation. The problem of identifying the tricritical point, at which a phase
transition moves from first order to a continuous transition, is particularly difficult in
numerical simulations. A number of methods have been suggested for determining
the nature of a phase transition using hysteresis [3], histogram techniques [4] and
finite-size scaling [5,6). In this work a novel microcanonical algorithm is described
which allows the determination of a density of states which depends upon two terms in
the Hamiltonian. This allows the partition function and thermodynamic functions to
be evaluated for any temperature and any single site anisotropy. The method provides
an improved technique for studying the first-order region of the phase diagram since
the two parts of phase space competing in the first-order transition can be explored
independently and fully. The microcancnical methods are simple to implement on
a parallel array of processors since each data point in the density of states can be
determined independently. The results presented here have been obtained using a 31
transputer array running as a simple processor farm.

The determination of the complete density of states for finite lattice models is
also of interest in order to study the behaviour of the zeros of the partition function.
The zeros in the complex plane and their finite-size scaling yield information about
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the critical properties of the system {7-14]. Thus Bhanot e af [7] are able to obtain
an accurate value for v in a Z(2) gauge theory with a lattice of only 5%. The form
of the finite-size scaling of the amplitude of the zero nearest to the positive real axis
in the complex temperature plane yields information about the nature of the phase
transition [10,13,15].

The work presented in this paper establishes the validity of the method for the
Blume-Capel model on a 16x 16 lattice. Future work will undertake the determination
of the partition function zeros and the finite-size scaling analysis to determine the
tricritical point.

The history of microcanonical methods is described in section 2, the new algorithm
is described in section 3, the simulation details are given in section 4, the error analysis
is given in section 5 and the results are given in section 6.

2. Microcanonical methods

There have been a number of studies of microcanonical Monte Carlo methods
(see, for example, [7,16-20]). The methods allow the determination of continuous
thermodynamic functions from a single data set including the partition function,
entropy and free energy. Lee [20] reports that in a simulation of a two-dimensional
Ising model he obtained the thermodynamic functions at all tcmperatures for the same
compurational effort required to obtain a single data point in conventional Monte
Carlo. However, some authors report the methods as being inefficient for more
complex problems. Thus Karliner er a/ [21] suggest improvements to the method
of Bhanot er a/ [7] which reintroduces Metropoiis sampling over restricted energy
ranges.

Other developments in conventional Metropolis Monte Carlo techniques include
that of Ferrenberg and Swendsen [22,23] who developed a histogram technique and
Rickman and Phillpot [24] who dcveloped a cumulant method. Alves ef al have
determined the density of states for an Ising model {13] and a Potts model [14] using
a multiple histogram method. All these techniques enable more efficient use of the
data collected by conventional Metropolis Monte Carlo methods. It should be noted
that these methods have a long history as detailed in [13] and one of the earliest
suggestions of a microcanonical method is that of McDonald and Singer [16].

In this work, we combine the approaches of Lee [20] and Ferrenberg [22]
and develop a method which uses microcanonical sampling to determine a two-
dimensional density of states. Unlike conventional Monte Carlo [25], the Hamiltonian
coefficients and temperature are treated as continuous variables which are chosen
after the simulation. Thus a single data sct is generated which may be used to
calculate continuous thermodynamic functions for a class of Hamiltonians. This makes
efficient use of the simulation data.

In the following we wish to determine the density of states for a two-dimensional
Blume—Capel model on a simple cubic lattice with N sites and in zero external field.
The standard ferromagnetic Hamiltonian is scaled by the exchange interaction, J,
and written in the dimensionless form

H(S,D,a)= ~S 4+ aqD (1)

where S = 3, .y o0, with (i, j) = all nearest-neighbour bonds; D = 3=,y of with
(#) = all N sites; o, = 41,0, ¢ is the coordination number of the lattice; and « is a
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Table 1. Exact values of o{.[J, S) used in caleulations.

s N N1 N-2 N-3

Sm 2

Sm— 4 2N

Sm — 7 Nyg

Sm — 8 N N(N-g¢g-1

Sm—10 2Nyg Ng(g-1)
S — 11 Ng(N -2¢)

dimensionless parameter which determines the strength of the single site anisotropy.
The results presented here are for a 16 x 16 lattice with periodic boundary conditions.

The heart of the method described here is the determination of the density of
states, p( 9, D), the total number of states of the 16 x 16 lattice with given values of
the sums S and D). All the thermodynamic functions may then be determined from
p(S, D). Thus the canonical expectation value of any observable O(S, D) is given
by

Sm N
Gy= > O(8, D)p(S, D)exp(—BH(S,D,a))/Z(e, B) 3]
S=-5,, D=0

where Z(a, 3) is the partition function

Sm N
Z(e,B)= Y, > p(8,D)exp(~BH(S,D,c)) ©)
S==8y, D=t

S, = Ngq/2and 3is J/kgT, a dimensionless inverse temperature. The parameters
o and 3 are continuous variables which are introduced during the post-processing of
the simulation data,

It should be roted that p( S, D) has the symmetry property

P(SaD) =P(_S*:D) (4)
and the normalization
Sm
Y. e(8.D)y=27 \Cp )
S==5,,
where
N!
~Cp = BN - by ©)
and also that
Sm N
> > (5. D)y =3V ™
S==8,. D=0

as would be expected for an S = 1 system.

The value of p(.S, D) may be calculated exactly for some values of S and D, In
the following we assume simply that p(S, D} is known exactly for |S| » S,. The
exact values used in the results presented below are given in table 1 and it can be
seen that in this work S, = (S,, — 11).
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3. Algorithm

We define the ratio R(S, D) by

p(S, D)

In order to determine R(S;, D,) we adopt the following algorithm:
(a) A state is generated with D = Dj and with § € I where

I={5:5,<5% 5} &)

(b) The state is modified using an algorithm which randomly changes S but not
D. This is achieved in this work by randomly choosing a spin, o;. If &; = +1, the
spin value is changed in sign. If o; = 0, it is exchanged with a non-zero spin, o;,
which is also chosen at random.

(c) If the new state has S € I, the new state is accepted, otherwise the old state
is retained.

A record is kept of the number of times, N(5,, D,), a state with S = 5, and
D = D, is observed. The quantity N(S, + 1, D) is also recorded. It is essential
that rejected moves are included in this counting process.

The algorithm generates a Markov chain with a symmetric stochastic transition
matrix and such a matrix has a left eigenvector {1,1...1) with eigenvalue unity.
Provided the matrix is irreducible this will be the limiting distribution of the Markov
chain {26] and consequently

R(Sn:Du) = E[N(SusDu)/N(Su+1aDu)1 (10)

where E[f] is the expected value of the random variable f.

It should be noted that it is possible to devise a very limited number of states that
lie within the interval I but are inacessible from the majority of the states in [ using
the algorithm described above. This has the consequence that the matrix is reducible
but the error in equation (10) is normally extremely small provided the initial state
of the Markov chain is chosen to be accessible from within the interval I and that [
is not made too narrow.

It follows from the conditions (4), (5) and (8) that for |S| < S,

5-1

Infe(S, D)] = tn[p(0, D)] - 3 In[R(3, D)] an
i={

where

Sm
Ilo(0, D)] =11 22 xCp 2 3 o(S, D)
S=8;

—In [1 + 2ZI{E(R(1',D))-1}]_ (12)

The choice of I is central to the success of the method. This may be illustrated if we
assume for simplicity that R(S,.D) is sensibly constant for S € I and has value R.
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The expected number of attempted moves to obtain one state with S = Sy + 1 may
then be written as N whete

Ng

b+1
E[ 3 (6(5+ &, D/o(S +1,D))
b=—a (13)

IR 1) /(R-1)]

where

a = number of allowed states with S € {S: 5, £ § < Sy}
b = number of allowed states with S € {S: 5;-+1< 8§ < Sy }.

In the sPin-% model considered by Lee [20], a choice of ¢« = b = 2 ensures
that all attempted moves starting in the aigorithm from states with either § = 5, or
S = §y+ 1 are successful. Lee argues that this maximizes the statistical efficiency of
method. Unfortunately in the spin-1 model, the states are more densely packed in S
and it iS necessary to choose @ = & = § in order that all moves from either 5 = 5§
or § == Sy + 1 are successful. In this case, Ng becomes O( R”) rather than O R®)
for Lee’s model.

4. Simulation details

In the results presented below, we choose ¢ = 0 and b = 8. This has the consequence
that many of the attempted moves from S = 5, or § = 5; 4+ 1 are rejected but
Ng becomes O( R). Clearly, when R is large, the majority of trial states will have
the lower values of S and the method will not generate new states very efficiently.
However, the method generates new states much more rapidly than O(R*) and
consequently the method is a considerable improvement over that of Lee’s.

The N(S,, Dy) follow a binomial distribution and the efficiency with which the
system generates independent configurations can be estimated within the simulation
by calculating a statistical inefficiency (e.g. [27]). The inefficiency, =, is defined to
be the ratio of the observed variance in N (S, D) to the variance expected on the
assumption of uncorr¢lated binomial statistics. It can be shown that this is given by

P
T T N ? (14)

where p is the probability of the system being in state N(S,, Dy), N, is the total
number of attempted spin flips for the determination of R(S,, D;) and f is the
fractional error in N(S,, D). The quantity p was estimated by N(S,, Dy)/ N, and
f was estimated by dividing the data into ten sub-blocks. For each calculation of
R(S,, D) the simylation was run for an ‘equilibration period’ during which time a
preliminary value for = was calculated. This was then used to estimate the number of
flips needed to achieve the target fractional error and an appropriate data collection
run was then implemented. The fractional error during the data collection run was
measured to verify the choice of number of spin fiips. The validity of the statistical
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assumptions used in the derivation of equation (14) was verificd by the success of
this method in predicting correctly the number of flips needed to achieve a required
fractionai error over a wide range of values of R(S,, Dy).

The variation of the inefficiency = with S value are presented in figure 1 for the
cases D = 256 in the 16 x 16 lattice and D = 434 in the 22 x 22 lattices. In each
figure the results are collected from ten independent runs each with a target fractional
error of f = 0.01. These two cases correspond to § = 1 Ising models. It can be
seen that the inefficiency rises to a broad maximum around the critical region of this
spin-1 system. However, the number of spin flips per site to achieve an independent
state is approximately 3.1 for the 16 x 16 lattice and 1.7 for the 22 x 22 for the broad
set of states near the critical point. This is similar to the efficiency achieved with
cluster flip algorithms [29] and on the basis of this limited data it appears that
scales with the lattice size L as L? with 2 < 1. This result is consistent with that
reported by Bhanot et al [7] who suggest that the microcanonical method does not
suffer from conventional critical slowing down.

3000 -
5 3000 5
& 2400 1 o 24001
o Q
i i -
5 1800 L 1800 1 = 484 :
o - l'
5 1200 4 & 1200 A :
5 % '
£ 500 & 600 - v
= = ;
@ * ;
a : : : . . 0 1 ; — .
0 100 200 300 400 500 0 180 360 540 720 900
§ VALUE § VALUE

Figure 1. Statistical inefficiency,r, as a function of S value for D) = 256 and D = 484.
In each diagram the value of S at the centre of the critical region is marked with the
dotted vertical line.

A possible reason for the difference from conventional critical dynamic behaviour
is that the dynamics of the method is determined by a correlation function of the
form {R(0).R(t)}), where R is the ratio defined in equation (10), rather than an
order parameter correlation function. Further, the microcanonical method works on
an energy ‘window' which does not change with lattice size although the fluctuations
(8E)? increases with box size. Thus the method only samples a limited number
of the critical states in each microcanonical run. Since a critical system does not
exhibit a critical energy it is possible that a microcanonical simulation will not exhibit
conventional critical slowing down as seen in standard Monte Catlo simulations near
to second-order phase transitions. However, it should be noted that the value of 7
does become very large for the regions of p( S, D) with values of R =~ 102

The technique has been further proved by successfully calculating R(S, D) for
values of § > S, where R(S, D) is known exactly and has values of a few hundred.
The success of the method in these regions is a very significant improvement over
the method of Lee which became unusably slow in this problem even for values of
R(8S, D) close to 2. The choice of b = 8 ensures that any spin flip which increases
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S from S, + 1 will always be accepted. If b is chosen to be too small, there will be
a problem with ergodicity as explained above. The success of the method for values
of & = 5, suggests that the current method is ergodic.

The technique described above has been implemented on a transputer array of
31 transputers. The code was written in parallel C and the algorithm for calculating
R(S, D) described in the algorithm (a) to (c) was implemented as a worker process
within a flood fill configurer. The method, therefore, gives a parallel Monte Carlo
program with a speed of computation which scales linearly with the number of
ProCessors.

The average time taken for one attempted spin flip was 43 us and hence with 31
processors the effective time for a spin flip was 1.4 ps. The data presented below
were collected over a period of 12 days and represent approximately 10'? attempted
spin flips in total. This represents approximately 4 x 10° lattice sweeps. Tucker
{28] has reported requiring approximately 107 lattice sweeps to obtain the tricritical
point to a similar accuracy reported in this paper using conventional Monte Carlo
histogram techniques [22]. However, these results only cover a limited range of a.
The code has not been optimized and further speed improvements could be achieved
by writing the core of the algorithm in a low-level language. Bhanot er al [18] show
that the simulation time to determine a one-dimensional density of states to a given
maximum error in each value of the density of states, scales as V2 using this type of
microcanonical method, where V = L¢. The simulation time to determine a two-
dimensional density of states to a given accuracy using the method described in this
paper will scale as V3. This arises because the density of states is essentially calculated
along lines of constant D, the number of such lines scales as V' and the simulation
time for each line scales as V2, as in the Bhanot case. However, in determining
a thermodynamic’function from the density of states, the density is summed over
a set of points whose number scales as L2 The simulation time to determine a
thermodynamic function to a given accuracy will therefore scale as V3/ L.

5. Error estimates

As explained above, the algorithm was designed to obtain each N(S,, D)) with a
fractional error f = 1% as measured from the sample variance. The error in the
R values is +/2f and the maximum absolute error in o(S, D) is determined by the
propagation of the errors in the individual R values and is given for an L x L system
by

Jaw = VaLf. (15)

In our work this corresponds t0 a maximum fractional error in p(S, D) of 32%.
However, in the caiculation of the specific heat from the density of states the number
of p(8, D) values which make a significant contribution will be of the order kL?
where, by inspection of the data, & is at least four. Thus the fractional error in
the specific heat will be f. = 1%. As explained below, the transition temperature
is determined from the maximum in the specific heat, The error in the transition
temperature is therefore determined by the error in the specific heat, C, and also the
value of 8C /8T at the maximum. From an inspection of the specific heat results,
the maximum error in the transition temperature is 0.4% with an error of 0.15% near
to the tricritical region.
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These arguments were checked by considering the D = 256 data which correspond
to a spin-1 model for which exact results are known for a finite lattice [30). The data
gave the normalization of equation (5) to an accuracy of 5% which is consistent
with a predicted error of 16%. The specific heat was determined to 0.9% of the
analytic value and the transition temperature to 0.4% of the analytic value, against
predicted errors of 1% and 0.5% respectively. It should be noted that this data set
took 1.5 x 10° lattice sweeps to accumulate,

It is important that the Boltzmann factor exp(—3H) associated with each term in
the summation (2) is calculated explicitly for each value of S and D, Thus in initial
calculations of the specific heat, a histogram of the density of states in energy for
given alpha was constructed and this was then used to generate an encrgy probability
distribution at a given temperature by multiplying each term in the histogram by an
appropriate Boltzmann factor. Unfortunately, the quantization in energy required to
construct the histogram was reflected in small discontinuities in the graph of critical
temperature against alpha. It is probable that similar ‘quantization noise’ will be
experienced in using histogram techniques (e.g. [22,23]) with conventional Monte
Carlo techniques.

In the future determination of the partition function zeros, the partition function
will be written as

Sm N
Z(z,yy= 3 > (S, D)z"yP (16)

S==8m D=0

where z = exp() and y = exp(—Bagq). The zeros of Z can be determined either
in the complex x or complex y plane. In each case the coefficients of the associated
polynomial will be determined by a summation over a set of p(S, D) values. The
principal contribution to each coefficient will come from a set of values whose number
is of order L and this will reduce the error for the coefficients from that given in
equation (15). The error in the zero nearest the real axis is considerably less than
the error in the coefficients in the polynomial [18] but it will be necessary to reduce
the errors further in order to obtain adequate scaling results. This will be achieved
by longer runs and by modifing the algorithm to make more effective use of the
observed data. It should be noted that the calculation of the two-component density
of states for this spin-1 model on a 16 x 16 lattice is as computationally demanding as
determing the full density of states for a spin-% model on a three-dimensional lattice
of size 22 x 22 x 22.

6. Results

The observed density of states is shown in figure 2 for S§ 2 0 but it should be noted
that the plotting algorithm is unable to show fine structure in the density of states.
For example, along the line D = 256 the system is effectively spin-} and the density
of states is only non-zero when S is divisible by four. However these ‘fjords’ in the
density of states are not resolved by the plotting algorithm,

The region of large S and D corresponds to the ordered ferromagnetic phase.
The region of smail S and D corresponds to the ‘disordered’, paramagnetic phase.
A line of constant energy is also shown in figure 2. It can be seen that, when o is
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Figure 2. Density of states p(.5, D) in the Blume-Capel model for a 16 x 16 lattice;
line of constant energy Ey for o = 0.5, :
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Figure 3. Pseudo-critical transition temperature determined from the peak in specific
heat in the 16 x 16 two-dimensional Blume-Capel model. Temperature in reduced units
kgT/J.

approximately 0.5, the system is exploring both regions and it is these two parts of
the phase space which will contribute to the first-order behaviour.

The density of states has been used to calculate the specific heat from the
fluctuations in the energy and as a function of « and 3. Figure 3 shows the
pseudo-critical temperature T,(L) where L is the linear dimension of the lattice.
The value of T, presented in figure 3 is obtained from the maximum in the specific
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Figure 4. Maximum value of specific heat as a function of the single site anisotropy
parameter, ¢, in the two-dimensional Blume-Capel model on a 16 x 16 lattice. Specific
heat equivalent to heat capacity per spin in reduced units of C/kg

heat for L = 16. Figure 4 shows the maximum value in the specific heat calculated
from density of states for a range of values of . The specific heat maximum has
a maximum as a function of « for a value o = 0.4924 + 0.0025 and temperature
T = 0.59693:0.0008. It is assumed that this peak is related to the onset of first-order
behaviour above the tricritical temperature since it is known from the mean-field
calculations [1,2] that the phase transition becomes first order for o just less than
0.5. The results are close to the values for the tricritical point calculated by Monte
Carlo repormalization group and other methods [31-34].

The change from first-order transition to continuous transition near the tricritical
point can be also studied by considering the probability of the system having a given
energy. In a first-order region, this probability function exhibits the double-peak
structure [4] as seen in figure 5, and this should not disappear [5] as the box size

0.025 L
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0 020 7 un :.Mq&ﬂ o"o:“m.m,lﬁ °° 3
. g v o
- f%&ﬂ\ 25,
- g, ©
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00051 o XN N
* e
i LW
0.000 4 T
0 50 100
Energy

Figure 5. Probability of energy in Blume-Capel model with o = 0.491 and energy in
reduced units of E/J: &, =1 = 0.615 4, =1 = 0.611; O, §~! = 0.608
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L — co. The two-peak probability- distribution and the tricritical behaviour are related
to the geometrical structure of the density of states for large L and the way in which
the two wings of the surface are explored for given o by exp(—8(—S + aqD)). The
relative weight of the two peaks changes as the temperature of the system is increased
and the two peaks merge as the vajue of alpha is reduced from 0.5.

7. Summary

In conclusion the microcanonical Monte Carlo method described above has the merit
of being straightforward to parallelize and explores both regions of a first-order
transition independently. The method does not appear to exhibit conventional critical
dynamics seen in standard Monte Carlo simulations of second-order phase transitions.
It was found that the microcanonical sampling method of Lee was unusably slow for
the S = 1 problem in regions where the density of states had a significant slope
and the microcanonical sampling described in this work is an improvement of his
sampling method. The method will also improve on that of Bhanot et 4/ [15,18,19]
in regions where the slope of the density of states is large. The method gives results
for the complete range of temperature and single site anisotropy parameter, «, and
allows calculation of the partition function zeros. However, the computational effort
depends upon the box dimensions as V3/L and this is a serious limitation. The
modifications suggested by Karliner e af [21] of introducing Metropolis Monte Carlo
within bounded energy may improve the simulation time but possibly at the expense
of the return of conventional critical dynamics. The method in its present form is
restricted to lattice problems and its main value may be in exploring systems which
exhibit first-order transitions.
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