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Abstracl. A microcanonical Monte Carlo algorithm has been deveroped to calculate 
the density of states of a two-dimensional Blume-Capel model in zero field. The 
full density of states is calculated for a 16 x 16 latlice as a function of the two spin 
summations which appear in the Hamiltonian. This permits the partilion function and 
related thermodynamic functions to be evaluated for any temperature and any single 
site anisotropy from a single data set. Results are presented for the pseudocritical 
transition temperature and the maximum in the specific heat as a function of the single 
site anisotropy parameter. The technique will allow the region near the uicrilical poinl 
to be explored in detail and will permit the fuiure determination of lhe zeros of the 
partition function. It should be noted that the microcanonical sampling method of Ice 
was found to be unusably slow for the S = 1 problem in regions where the density of 
states had a significant slope and the microcanonical sampling described in this work is 
a significant improvement on his sampling method. 

1. Introduction 

The motivation behind the work presented in this paper is to obtain an estimate of 
the tricritical point in a two-dimensional ferromagnetic Blume-Capel model [1,2] by 
computer simulation. The problem of identifying the tricritical point, at which a phase 
transition moves from first order to a continuous transition, is particularly difficult in 
numerical simulations. A number of methods have been suggested for determining 
the nature of a phase transition using hysteresis [3], histogram techniques [4] and 
finite-size scaling [5,6]. In this work a novel microcanonical algorithm is described 
which allows the determination of a density of states which depends upon two terms in 
the Hamiltonian. This allows the partition function and thermodynamic functions to 
be evaluated for any temperature and any single site anisotropy. The method provides 
an improved technique for studying the first-order region of the phase diagram since 
the two parts of phase space competing in the first-order transition can be explored 
independently and fully. The microcanonical methods are simple to implement on 
a parallel array of processors since each data point in the density of states can be 
determined independently. The results presented here have been obtained using a 31 
transputer array running as a simple processor farm. 

The determination of the complete density of states for finite lattice models is 
also of interest in order to study the behaviour of the zeros of the partition function. 
The zeros in the complex plane and their finite-size scaling yield information about 
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the critical properties of the system (7-141. Thus Bhanot er 4l [7] are able to obtain 
an accurate value for U in a Z(2) gauge theory with a lattice of only 54. The form 
of the finite-size scaling of the amplitude of the zero nearest to the positive real axis 
in the complex temperature plane yields information about the nature of the phase 
transition [lo, 13,151. 

The work presented in this paper establishes the validity of the method for the 
Blume-Capel model on a 16x16 lattice. Future work will undertake the determination 
of the partition function zeros and the finite-size scaling analysis to determine the 
tricritical point. 

The history of microcanonical methods is described in section 2, the new algorithm 
is described in section 3, the simulation details are given in section 4, the error analysis 
is given in section 5 and the results are given in section 6. 

2. Micmcanonical methods 

There have been a number of studies of microcanonical Monte Carlo methods 
(see, for example, [7,16-201). The methods allow the determination of continuous 
thermodynamic functions from a single data set including the partition function, 
entropy and free energy. Lee [20] reports that in a simulation of a two-dimensional 
Ising model he obtained the thermodynamic functions at all temperatures for the same 
computational effort required to obtain a single data point in conventional Monte 
Carlo. However, some authors report the methods as being inefficient for more 
complex problems. Thus Karliner et a1 [21] suggest improvements to the method 
of Bhanot er a i  [7] which reintroduces Metropolis sampling over restricted energy 
ranges. 

Other developments in conventional Metropolis Monte Carlo techniques include 
that of Ferrenberg and Swendsen (22,231 who developed a histogram technique and 
Rickman and Phillpot [24] who developed a cumulant method. Alves er a1 have 
determined the density of states for an Ising model 1131 and a Potts model [I41 using 
a multiple histogram method. All these techniques enable more efficient use of the 
data collected by conventional Metropolis Monte Carlo methods. It should be noted 
that these methods have a long history as detailed in [I31 and one of the earliest 
suggestions of a microcanonical method is that of McDonald and Singer [16]. 

In this work, we combine the approaches of Lee [20] and Ferrenberg [22] 
and develop a method which uses microcanonical sampling to determine a two- 
dimensional densify of states. Unlike conventional Monte Carlo [25], the Hamiltonian 
coefficients and temperature are treated as continuous variables which are chosen 
after the simulation. Thus a single data set is generated which may be used to 
calculate continuous thermodynamic functions for a class of Hamiltonians. This makes 
efficient use of the simulation data. 

In the following we wish to determine the density of stales for a two-dimensional 
BlumeCapel model on a simple cubic lattice with N sites and in zero external field. 
The standard ferromagnetic Hamiltonian is scaled by the exchange interaction, J ,  
and written in the dimensionless form 

H ( S ,  D , a )  = -S -+ a q D  (1) 

where S = Q i , j )  up, with ( i , j )  = all nearest-neighbour bonds; D = ut with 
(i) = all N sites; ui = &l,@ q is the coordination number of the lattice; and a is a 
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Table 1. Exact values of p(D,  S) used in calculations. 
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S N N - 1  N - 2  N - 3  

S, 2 
s, - 4 2N 
s,-7 N q  
Sm-8 2N N ( N -  q -  1) 
s, - 10 2 N 9  Nq(q  - 1) 
s, - 11 N d N  - 2q) 

dimensionless parameter which determines the strength of the single site anisotropy. 
The results presented here are for a 16 x 16 lattice with periodic boundary conditions. 

The heart of the method described here is the determination of the density of 
states, p( S, D), the total number of states of the 16 x 16 lattice with given values of 
the sums S and D. AI1 the thermodynamic functions may then be determined from 
p(S,D). Thus the canonical expectation value of any observable b ( S ,  D) is given 
bY 

S, N 

(4 = b(s,D)p(S,D)exP(-PH(S,D,a))/Z(~,P) (2)  
S=-S, D=O 

where Z(a, p) is the partition function 
S, N 

Z(%P) = P(S ,D)exP( -PU(S ,D.~x) )  (3 )  
S=-S, D=U 

S, = N q / 2  and p is J/k ,T ,  a dimensionless inverse temperature. The parameters 
01 and p are continuous variables which are introduced during the post-processing of 
the simulation data. 

It should be noted that p( S, D) has the symmetry property 

P(S,D) = P(-S,D) (4) 
and the normalization 

SI 

p ( S , D )  = 2D &,eD 
sz-s, 

where 
N !  

N c D =  D ! ( N - D ) !  
and also that 

SI N 

as would be expected for an S = 1 system. 
The value of p( S, D) may be calculated exactly for some values of S and D. In 

the following we assume simply that p ( S , D )  is known exactly for IS1 2 S,. The 
exact values used in the results presented below are given in table 1 and it can be 
seen that in this work S, = (S, - 11). 
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3. Algorithm 

We define the ratio R( S, D) by 

In order to determine R(S,,, D,) we adopt the following algorithm: 
(a) A state is generated with D = D, and with S E I where 

I = { S  : s, < s < S,}. (9) 

(b) The state is modified using an algorithm which randomly changes S but not 
D. This is achieved in this work by randomly choosing a spin, ui. If oi = fl, the 
spin value is changed in sign. If ui = 0, it is exchanged with a non-zero spin, uj, 
which is also chosen at random. 

(c) If the new state has S E I, the new state is accepted, otherwise the old state 
is retained. 

A record is kept of the number of times, N (  So,,&), a state with S = S, and 
D = D, ki observed. The quantity N (  S, -+ 1, D,) is also recorded. It is essential 
that rejected moves are included in this counting process. 

The algorithm generates a Markov chain with a symmetric stochastic transition 
matrix and such a matrix has a left eigenvector (1,l.. . 1) with eigenvalue unity. 
Provided the matrix is irreducible this will be the limiting distribution of the Markov 
chain 126) and consequently 

R(So,Du) = E[N(Su,Du)/N(Su+ 1,Du)l (10) 

where E [ f ]  is the expected value of the random variable f .  
It should be noted that it is possible to devise a very limited number of states that 

lie within the interval I but are inacessible from the majority of the states in I using 
the algorithm described above. This has the consequence that the matrix is reducible 
but the error in equation (10) is normally extremely small provided the initial state 
of the Markov chain is chosen to be accessible from within the interval I and that I 
is not made too narrow. 

It follows from the conditions (4), (5) and (8) that for IS1 < S, 

S- 1 

I ~ [ P ( S , D ) I  = Ink@, D)I - C I n [ R ( i ,  011 (11) 
i=U 

where 
S, 

s;: s, 
~ p ( 0 ,  D)I = In [ZD N ~ D  - 2 p ( ~ ,  D)] 

The choice of I is central to the success of the method. This may be illustrated if we 
assume for simplicity that R( S, D) is sensibly constant for S E I and has value R. 
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The expected number of attempted moves to obtain one state with S = S, + 1 may 
then be written as NE where 

where 

a = number of allowed states with S E {S : S, < S < S,} 

b = number of allowed states with S E {S : S, + 1 < S < Su}. 

In the spin-4 model considered by Lee [ZO], a choice of Q = b = 2 ensures 
that all attempted moves starting in the algorithm from states with either S = S, or 
S = So + 1 are successful. Lee argues that this maximizes the statistical efficiency of 
method. Unfortunately in the spin-1 model, the states are more densely packed in S 
and it is necessary to choose a = b = 8 in order that all moves from either S = S, 
or S = S, + 1 are successful. In this case, NE becomes O( Ry)  rather than O( R3) 
for Lee's model. 

4. Simulation details 

In the results presented below, we choose a = 0 and b = 8. This has the consequence 
that many of the attempted moves from S = S, or S = So + 1 are rejected but 
NE becomes O( R) .  Clearly, when R is large, the majority of trial states will have 
the lower values of S and the method will not generate new states very efficiently. 
However, the method generates new states much more rapidly than O ( R y )  and 
consequently the method is a considerable improvement over that of Lee's. 

The N( S,, D,) follow a binomial distribution and the efficiency with which the 
system generates independent configurations can be estimated within the simulation 
by calculating a statistical inefficiency (e.g. [27]). The inefficiency, r ,  is defined to 
be the ratio of the observed variance in N(S, ,  D,) to the variance expected on the 
assumption of uncorrelated binomial statistics. It can be shown that this is given by 

where p is the probability of the system being in state N( S,, D,), Nml is the total 
number of attempted spin flips for the determination of R( S,, D,) and f is the 
fractional error in N( So, D,). The quantity p was estimated by N(S , ,  DU)/NIot and 
f was estimated by dividing the data into ten sub-block. For each calculation of 
R( So, D,) the simulation was run for an 'equilibration period' during which time a 
preliminary value for r was calculated. This was then used to estimate the number of 
flips needed to achieve the target fractional error and an appropriate data collection 
run was then implemented. The fractional error during the data collection run was 
measured to verify the choice of number of spin flips. The validity of the statistical 
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assumptions used in the derivation of equation (14) was verified by the success of 
this method in predicting correctly the number of flips needed to achieve a required 
fractional error over a wide range of values of R(SU, Do). 

The variation of the inefficiency T with S value are presented in figure 1 for the 
cases D = 256 in the 16 x 16 lattice and D = 484 in the 22 x 22 lattices. In each 
figure the results are collected from ten independent runs each with a target fractional 
error of f = 0.01. These two cases correspond to S = $ king models. It can be 
seen that the inefficiency rises to a broad maximum around the critical region of this 
spin-$ system. However, the number of spin flips per site to achieve an independent 
state is approximately 3.1 for the 16 x 16 lattice and 1.7 for the 22 x 22 for the broad 
set of states near the critical point. This is similar to the efficiency achieved with 
cluster flip algorithms [29] and on the basis of this limited data it appears that T 

scales with the lattice size L as L’ with z < 1. This result is consistent with that 
reported by Bhanot et a1 [7] who suggest that the microcanonical method does not 
suffer from conventional critical slowing down. 

3000 7 3000 1 I 

S VALUE S VALUE 

Figure 1. Statistical ine%ciency,r, as a function of S value for D = 256 and D = 484. 
In each diagram the value of S at the centre of the critical region is marked with the 
dotted venical line. 

A possible reason for the difference from conventional critical dynamic behaviour 
is that the dynamics of the method is determined by a correlation function of the 
form (R(O)R(t)), where R is the ratio defined in equation (lo), rather than an 
order parameter correlation function. Further, the microcanonical method works on 
an energy ’window’ which does not change with lattice size although the fluctuations 
(SE)z  increases with box size. Thus the method only samples a limited number 
of the critical states in each microcanonical run. Since a critical system does not 
exhibit a crilical energy it is possible that a microcanonical simulation will not exhibit 
conventional critical slowing down as seen in standard Monte Carlo simulations near 
to second-order phase transitions. However, it should be noted that the value of T 

does become very large for the regions of p( S, D) with values of R 
The technique has been further proved by successfully calculating R(S,  D) for 

values of S 2 S, where R( S, D) is known exactly and has values of a few hundred. 
The success of the method in these regions is a very significant improvement over 
the method of Lee which became unusably slow in this problem even for values of 
R( S, D) close to 2. The choice of b = 8 ensures that any spin flip which increases 

lo2. 
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S from So + 1 will always be accepted. If b is chosen to be too small, there will be 
a problem with ergodicity as explained above. The success of the method for values 
of S 3 S, suggests that the current method is ergodic. 

The technique described above has been implemented on a transputer array of 
31 transputers. The code was written in parallel C and the algorithm for calculating 
R(S, D) described in the algorithm (a) to (c) was implemented as a worker process 
within a flood fill configurer. The method, therefore, gives a parallel Monte Carlo 
program with a speed of computation which scales linearly with the number of 
processors. 

The average time taken for one attempted spin flip was 43 ps and hence with 31 
processors the effective time for a spin flip was 1.4 ps. The data presented below 
were collected over a period of 12 days and represent approximately 10l2 attempted 
spin flips in totaL This represents approximately 4 x loy lattice sweeps. 'hcker 
[28] has reported requiring approximately IO7 lattice sweeps to obtain the tricntical 
point to a similar accuracy reported in this paper using conventional Monte Carlo 
histogram techniques [22]. However, these results only cover a limited range of a. 
The code has not been optimized and further speed improvements could be achieved 
by writing the core of the algorithm in a low-level language. Bhanot et a1 [18] show 
that the simulation time to determine a one-dimensional density of states to a given 
maximum error in each value of the density of states, scales as Vz using this type of 
microcanonical method, where V = Ld.  The simulation time to determine a two- 
dimensional density of states to a given accuracy using the method described in this 
paper will scale as V3. This arises because the density of states is essentially calculated 
along lines of constant D, the number of such lines scales as V and the simulation 
time for each line scales as Vz, as in the Bhanot case. However, in determining 
a thermodynamic'function from the density of states, the density is summed over 
a set of points whose number scales as L2. The simulation time to determine a 
thermodynamic function to a given accuracy will therefore scale as V 3 / L .  

5. Error estimates 

As explained above, the algorithm was designed to obtain each N(S,, 0,) with a 
fractional error f = 1% as measured from the sample variance. The error in the 
R values is df and the maximum absolute error in p(S,D) is determined by the 
propagation of the errors in the individual R values and is given for an L x L system 
by 

In our work this corresponds to a maximum fractional error in p( S, D) of 32%. 
However, in the calculation of the specific heat from the density of states the number 
of p(S,D) values which make a significant contribution will be of the order kLz  
where, by inspection of the data, k is at least four. Thus the fractional error in 
the specific heat will be fc = 1%. As explained below, the transition temperature 
is determined from the maximum in the specific heat. The error in the transition 
temperature is therefore determined by the error in the specific heat, C, and also the 
value of aC/aT at the maximum. From an inspection of the specific heat results, 
the maximum error in the transition temperature is 0.4% with an error of 0.15% near 
to the tricritical region. 
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These arguments were checked by considering the D = 256 data which correspond 
to a spin-4 model for which exact results are known for a finite lattice [30]. The data 
gave the normalization of equation (5) to an accuracy of 5% which is consistent 
with a predicted error of 16%. The specific heat was determined to 0.9% of the 
analytic value and the transition temperature to 0.4% of the analytic value, against 
predicted errors of 1% and 0.5% respectively. It should be noted that this data set 
took 1.5 x 106 lattice sweeps to accumulate. 

It is important that the Boltmann factor exp(-pX) associated with each term in 
the summation (2)  is calculated explicitly for each value of S and D. Thus in initial 
calculations of the specific heat, a histogram of the density of states in energy for 
given alpha was constructed and this was then used to generate an energy probability 
distribution at a given temperature by multiplying each term in the histogram by an 
appropriate Boltzmann factor. Unfortunately, the quantization in energy required to 
construct the histogram was reflected in small discontinuities in the graph of critical 
temperature against alpha. It is probable that similar ‘quantization noise’ will be 
experienced in using histogram techniques (e.g. [22,23]) with conventional Monte 
Carlo techniques. 

In the future determination of the partition function zeros, the partition function 
will be written as 

where I = exp(p) and y = exp( -pq) .  The zeros of Z can be determined either 
in the complex 2‘ or complex y plane. In each case the coefficients of the associated 
polynomial will be determined by a summation over a set of p ( S ,  D) values. The 
principal contribution to each coefficient will come from a set of values whose number 
is of order L and this will reduce the error for the coefficients from that given in 
equation (15). The error in the zero nearest the real axis is considerably less than 
the error in the coefficients in the polynomial [18] but it will be necessary to reduce 
the errors further in order to obtain adequate scaling results. This will be achieved 
by longer runs and by modiling the algorithm to make more effective use of the 
observed data. It should be noted that the calculation of the two-component density 
of states for this spin-1 model on a 16 x 16 lattice is as computationally demanding as 
determing the full density of states for a spin-! model on a three-dimensional lattice 
of sue 22 x 22 x 2 2  

6. Results 

The ObServed density of states is shown in figure 2 for S 2 0 but it should be noted 
that the plotting algorithm is unable to show fine structure in the density of states. 
For example, along the line D = 256 the system is effectively spin-; and the density 
of states is only non-zero when S is divisible by four. However these ‘fjords’ in the 
density of states are not resolved by the plotting algorithm. 

The region of large S and D corresponds to the ordered ferromagnetic phase. 
The region of small S and D corresponds to the ‘disordered‘, paramagnetic phase. 
A line of constant energy is also shown in figure 2. It can be seen that, when a is 



MicrocanonicaI Monte CarIo study of a 2D Blume-Capel model 1489 

Figure 2. Density of states p(S ,  D) in the Blume-Capel model for a 16 x 16 lattice; 
line of constant energy Eo for (I s 0.5. 

- .  
0.00 0.10 0.20 0.30 0.40 0.50 

ALPHA 

Flgure 3. Pseudocritical transition temperature determined from the peak in specific 
heat in the 16 x 16 two-dimensional Blume-Capel model. Temperature in reduced units 
ksTl J .  

approximately 0.5, the system is exploring both regions and it is these two parts of 
the phase space which will contribute to the first-order behaviour. 

The density of states has been used to calculate the specific heat from the 
fluctuations in the energy and as a function of cr and p. Figure 3 shows the 
pseudo-critical temperature T,( L) .where L is the linear dimension of the lattice. 
The value of T, presented in figure 3 is obtained from the maximum in the specilic 
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Figure 4. Maximum value of spesiflc heat as a function of the single site anisotropy 
parameler, or, in the two-dimensional Blume-Capel model on a 16 x 16 lattice. Specific 
heat equivalent to heat capacily per spin in reduced units of Clka 

heat for L = 16. Figure 4 shows the maximum value in the specific heat calculated 
from density of states for a range of values of Q. The specific heat maximum has 
a maximum as a function of Q for a value 01 = 0.4924 f 0.0025 and temperature 
T = 0.59692~0.0008. It is assumed that this peak is related to the onset of first-order 
behaviour above the tricritical temperature since it is known from the mean-field 
calculations [1,2] that the phase transition becomes first order for 01 just less than 
0.5. The results are close to the values for the tricritical point calculated by Monte 
Carlo renormalization group and other methods [31-341. 

The change from first-order transition to continuous transition near the tricritical 
point can be also studied by considering the probability of the system having a given 
energy. In a first-order region, this probability function exhibits the double-peak 
structure [4] as seen in figure 5, and this should not disappear [SI as the box size 

0.020 

h .= 0.015 - 5 
*.a 

* 
a q.* 

0.010 
a.* 

0.005 

0.000 
0 50 

Energy 

Figure S. Probability of energy in Blume-Capel model with or = 0.491 and energy in 
reduced units of EIJ: 0,  p-' = 0.615; A, P-' = 0.611; U, p-' = 0.608 
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L + 00. The two-peak probability-distribution and the tricritical behaviour are related 
to the geometrical structure of the density of states for large L and the way in which 
the two wings of the surface are explored for given a by exp(-@(-Sf a q D ) ) .  The 
relative weight of the two peaks changes as the temperature of the system is increased 
and the two peaks merge as the value of alpha is reduced from 0.5. 

7. Summary 

In conclusion the microcanonical Monte Carlo method described above has the merit 
of being straightfonvard to parallelize and explores both regions of a first-order 
transition independently. The method does not appear to exhibit conventional critical 
dynamics seen in standard Monte Carlo simulations of secondader phase transitions. 
It was found that the microcanonical sampling method of Lee was unusably slow for 
the S = 1 problem in regions where the density of states had a significant slope 
and the microcanonical sampling described in this work is an improvement of his 
sampling method. The method will also improve on that of Bhanot et a1 [15,18,19] 
in regions where the slope of the density of states is large. The method gives results 
for the complete range of temperature and single site anisotropy parameter, a, and 
allows calculation of the partition function zeros. However, the computational effort 
depends upon the box dimensions as V 3 /  L and this is a serious limitation. The 
modifications suggested by Karliner et a1 1211 of introducing Metropolis Monte Carlo 
within bounded energy may improve the simulation time but possibly at the expense 
of the return of conventional critical dynamics. The method in its present form is 
restricted to lattice problems and its main value may be in exploring systems which 
exhibit first-order transitions. 
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